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QUASISTEADY-STATE PLANE-PARALLEL MOTION 
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Slow plane-parallel motion of a viscous incompressible liquid with interphase boundary 
is considered in the absence of external and inertial mass forces. This implies that the 
complex velocity v = v x + iVy and the pressure p satisfy a steady-state homogeneous Stokes 
system in the plane z = x + iy, with the change in the stress vector on the interphase bound- 
ary equal to the capillary forces, while the continuous velocity field defines the displace- 
ment of y everywhere (phase transitions are absent). The proposed approximation is a natural 
one and can be justified at low Reynolds number and finite Struchal number. 

For simplicity we assume that the surface tension coefficient o is a known function of 
the point z and time t. For example, in the problem of thermocapillary convection this is 
true if the liquid temperature is known. It develops that in such a case for a fixed 7 curve 
the dynamic condition defines the normal velocity component on 7 in the form of an explicit 
operator N(71. We will call this operator the "normal velocity." Then the kinematic condi- 
tion leads to the dynamic system 

= N(~) (o .  1) 

(where ~ is the rate of motion of ~ along its normal). 

I. Fundamental Concepts. We introduce the notation of the Cauchy-Riemann operator 
2% = ~x - i~y and the external "stress" form P(dz) = i(pdz + 2~vdz) (where �9 ~x, 8y are opera- 
tors representing partial differentiation with respect to x, y; ~ is the dynamic viscosity 
coefficient, which will be considered piecewise-continuous with a discontinuity line 7). The 
differentials here are calculated at a fixed time t, and the explicit dependence of all quan- 
tities on t will not be indicated. 

Let z = T(s) be the parametrization of the curve 7 with arc length s, ~ = id~/ds being 
its normal. For the piecewise-continuous function f(z) with discontinuity line X we take 
fi(T) = lira f(~ ~-~), T ~ ?, then write the fundamental problem in the form 

z~• 
dP(dz) = O, d Im(yd~) = 0 ou t s ide  X ; ( 1 . 1  ) 

P +(dr) - -  P_(d~) = d(~dT/ds), ? = n e ~ v )  on ? .  ( 1 . 2  ) 

The velocity field will then be assumed continuous over the entire plane and vanishing 
at infinity, together with the pressure. 

From Eq. (1.11 there follows the Kolosov-Muskhelishvili representation v(z) = ~(z)-- 

z~'(z) --~(z--), ~P(dz) = 2~d [~(z) ~- z~'~) -5 ~(z)i, where the functions ~), ~(z) analytic outside 

J" P (dz) O, are everywhere well defined. The latter follows from the easily proved identity = 
0o 

where the region D contains the contour 7, consisting by definition of simple closed curves 

7j- 

Let ~+(T)--~_(T)=~(~); then from the continuity of the velocity there follows the equal- 

ity ~+(~)--~_(T) = ~(~)--Td(o(T)/dr. Since from the solution for v, p of the Stokes system the 
function ~ is defined to the accuracy of the piecewise-continuous function v(~) = 0, it can 
be assumed that ~(oo) =~(oo)=0. The additive constants in the function ~ on the Xj curves 
will be fixed below by interpretation of the dynamic condition [see Eq. (1.31]. 

From the known change of the functions ~ and $ we construct Cauchy-type integrals, which 
lead to the basic equations iP(dz) = 2~dUT~, v = VTm, Im(vd~) = dWTm. Here UX, V~, W~ are 
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'5[ i n t e g r a l  o p e r a t o r s  o v e r  ~,  d e f i n e d  by t h e  e x p r e s s i o n s  U v ( m [ a ) = ~ 7  m(~)dln _ - - ~ - ~  X 

d ( ' - - ' ) ] ~  ' V v ( m [ z ) = ~ '  ~[ ~176176 Re ' ~ - 5 m ( ~ ) d [ ( x - - z ) l n [ ~ - - z , 2 ] .  I t  i s  
V ? 

obvious that the velocity V~m and the flow function WTm are continuous everywhere, while 

(Uv~)i = ~-~ -~ U~0(U v being the main value of UX on 7). Integrating the dynamic condition, 
we obtain a Fredholm integral equation on the plane m (an analog of the Sherman-Laurichell 
equation) 

4 ~ ( ~  + ~ O ~ )  = ~v, ~ = ( t /2) (~+ + ~_), 
= (~+ _ ~_)/(~+ + ~_), ( 1 . 3 )  

where the integration constants on 7j are dropped, which eliminates the arbitrariness in 
choice of m. It can easily be seen that ~c ----- ~c, Vvc = O, Wvc ---- 0 (where c is a number con- 
stant on each 7j, the sign of which is chosen depending on the orientation of 7j). 

We will demonstrate that Eq. (1.3) is always soluble , if 0 < U < oo and 7 is a Lyapunov 
curve. In the given case IXI < i and the operator U7 has a weak singularity, so that for 
proof of the solubility of Eq. (1.3) it is sufficient to establish the uniqueness of the 

zeroth solution at o = 0. Using the integral identity 4 ~]Ou]2dxdg + Re o-$[sdT = 0 and the 

7 

condition at infinity, we obtain an identically vanishing solution v = 0, p = 0. 

Consequently, the function ~ is piecewise-continuous as is m, so that homogeneous equa- 
tion (1.3) leads to the equality m • km = 0 or m = 0. Thus the solution of Eq. (1.3) can be 
represented in the form 45m = o~ - XRx(ov) (where R% is an integral operator). 

2. Realization of the "Normal Velocity" Operator. The operator N(X) is now completely 

concretized: N(?) = dF('O/ds, ~ ~ ?. Here 4~F(~) = W~(ov -- hR,(or)) or in expanded form 4~F(%)---- 

i~a Im(du In,z 12]. Let a dot above denote differ- 

(* 

2~- -- ~0 

e n t i a t i o n  w i t h  r e s p e c t  t o  t i m e ;  t h e n  s y s t e m  ( 0 . 1 )  t r a n s f o r m s  t o  t h e  e q u a t i o n  

Im(~d~) = dF(T), (2.1) 
b e c a u s e  ? = Im(~d~ds). We n o t e  t h a t  now in  Eq. ( 2 . 1 )  t h e  p o s i t i o n  o f  t h e  p o i n t  x on X can be 
s p e c i f i e d  by any p a r a m e t e r .  

We assume t h a t  ~ i s  a c o u n t e r c l o c k w i s e  c u r v e ,  bound ing  a f i n i t e  r e g i o n  ( p l a n a r  " d r o p -  

l e t " ) .  L e t  "~r 2 be i t s  a r e a ,  and a i t s  c e n t e r  o f  mass ,  i . e . ,  2 ~ r 2 = I m  Td% a = ~ r  ~ I~l~d,. 

I t  f o l l o w s  f rom Eq. ( 2 . 1 )  t h a t  t h e  a r e a  o f  t h e  " d r o p l e t "  i s  p r e s e r v e d ,  w h i l e  t h e  p o i n t  a 
moves a c c o r d i n g  t o  a law 

�9 t J CF(.Od~:. ( 2 . 2 )  

We will consider the manifold M of real 2~-periodic continuous functions ~(e) satisfying 

the conditions ~ e2ndO = t ,  ean+~~ = 0. Then the class of curves stellate relative to the 

point a can be specified by the element N ~M in the form ? = {T= a~-ren+i0}. As a result 
Eq. (2.1) transforms to a system for a and ~: 

a ---- A(a, n); 

(een,/2)" -k B'(n,  a) ---- 0, 

where  A(a ,  q) i s  t h e  r i g h t  s i d e  o f  Eq. ( 2 . 2 ) ;  B(~, al0) = r-2{Im[a(~ - -  a)] - -  F(~)}. 
below the prime denotes differentiation with respect to 9. 
construction can be performed for a set of closed curves. 

(2.3) 

(2.4) 

Here and 
It is obvious that an analogous 
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3. Exact Solutions. Since B(O, a) = 0 for an arbitrary function o(z), then within the 
class of circles there exists a solution of system (0.i), if their centers satisfy the ordi- 
nary differential equation 

,! 8 ~  2 ~ (a + rO 0) e~0d0. ( 3 . 1  ) a =  A(a, O)~- 

We introduce the positive function 

o~(O) = c;(a + reiO)/~r (3 .2)  

and the mlbert  operator H with the expression n ( l l 0 ) = ~  [ l ( ~ ) ~ t ~ d ~  Then the liquid 

v e l o c i t y  on ~ i s  d e f i n e d  i n  t h e  f o r m  v(a-4-re m) = a--riOOH(alO). F o r  e x a m p l e ,  i f  a(z) = % [ t  § 

e([z/rl 2 ~  t)1, t h e n  by  c h o o s i n g  a s  t h e  t i m e  s c a l e  4-~r/ao, we o b t a i n  t h e  s o l u t i o n  a = aoe-tt, v(a-5 
re m ) -  --~ae 2m ( w h e r e  ao i s  t h e  c e n t e r  o f  t h e  i n i t i a l  c i r c l e  and  r i s  i t s  r a d i u s ) .  

L i n e a r i z a t i o n  o f  Eq. ( 2 . 4 )  a t  t h e  e q u i l i b r i u m  p o s i t i o n  ~ = 0, a = 0 l e a d s  t o  t h e  p r o b l e m  
+ ( H q ) '  = 0 f o r  t h e  f u n c t i o n  q o r t h o g o n a l  t o  1 and  e l 0 .  �9 I f  q0 (O)  i s  t h e  i n i t i a l  p e r t u r b a -  

e-St F '  cos2(O-- ~) -- e - t  cos (0-- ~) 
tion of ~, then ~(0)=--~ v l--2e -tcos(0-~)+e -2t ~0(~)d~" It is interesting that with in- 

crease in time a-+0 for e > 0, while q + 0 for all e. Our goal is to prove this last asser- 
tion in more general form. 

4. Stability of the Interphase Boundary Form. Now for simplicity let I = 0, so that the 
problem of Eq. (2.4) linearized to the exact solution q = 0 has the simple form 

+ [ ~ / ( ~ )  - ~ H ~  - -  K(~ ,  ~ ) l '  = 0~ ( 4 . 1 )  

where the coefficient ~ is defined by Eq. (3.2) and K(~, ~[0)=-~ ~(~)[~(~)sin (0- ~)- H 

(~l~)cos (0- ~)]d~. It is obvious that the set ToM of functions q orthogonal to 1 and e i8 (tan- 
gent space at the null of the manifold M) is invariant with respect to the operator of Eq. 
(4.1). We introduce in the set ToM the structure of a Sobolev space with norm ~]~,_-- 

(~ l~l~'l%lJ I/~, %=2~ ~ N(0) e-i~0d0 and define the two following numbers: ~.-----inf~, 6=inf~ 0- 
I ~ 0 , t  t 

2sup ~ ]~[ (it being obvious that 5~<~.). Then the estimates 
t I~1#0 

II~ll0<~ll~0110 ~-~=*', 11~ll,<~lI~016e-~t, s~>0 (4.2) 

are valid (where q0 is the initial perturbation). In particular, for 6 > 0 and s > 1/2 we 
have asymptotic stability of the zeroth solution at the norm of the continuous functions. 

A first estimate is easily obtained by multiplication of Eq. (4.1) by q and integration 

over period, which leads to the identity (tlNtI~12)'+ 2~ ~ |2sinO--~ �9 Since the 

second term for ~ = 1 coincides with IINII,~/~, by Gronwall's lemma the first assertion is valid. 
The second inequality is based on evaluation of the commutator IIH(=n)- n//~ll, < 2YI=~lllnl6, s~0. 
In fact, 

<z(2y ik_ Zi.l  _,it ,i z z r k -  z o 

M u l t i p l y i n g  Eq. ( 4 . 1 )  s c a l a r l y  by t h e  f u n c t i o n  ~ [ k l 2 ~ u e i h ~  we o b t a i n  t h e  i n e q u a l i t y  (11~[I~/2)" + 
h 

l[~+1/2, f r o m  w h i c h  Eq.  ( 4 . 2 )  f o l l o w s .  I n  a p p l y i n g  G r o n w a l l ' s  lemma i t  i s  %ll ~ 
h # o  

n e c e s s a r y  t o  u s e  t h e  e s t i m a t e  ~s+r/2 ~ 1/211~6, v a l i d  f o r  ~ ~ ToM. 
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The stability condition 6 > 0 can be ensured by requiring that the analog of the Maran- 
goni number Ma ~ r supla~I/inf~ lie in the interval [0, Ma*]. From general considerations Ma 
defines the ratio of the velocity of drift of the center of mass a [see Eq. (3.1)] to the 
velocity of "rounding" of 7, while since in real situations Ma is limitingly small, it is 
obvious that the dynamics of the interphase boundary are close to those of a circle, which 
is in fact described by one equation of Eq. (3.1). 

Notes. i. The Kolosov-Muskhelishvili representations and Sherman-Laurichell equa- 
tions [i] can be extended from elasticity theory almost without change to viscous liquid 
hydrodynamics (see [2, 3] and literature cited therein). The methods of the theory of func- 
tions of a complex variable were first applied to steady-state problems with a free boundary 
for the Navier-Stokes equation by the author of [4-8]. The exact solutions found herein 
were in fact obtained in [5], while [6, 7] established the isolated nature of some of these. 

2. To prove Eq. (4.2) the author used an inequality for the commutator [9]. It is 
interesting that the linearized equation (4.1) contains no arbitrary surface tension coeffi- 
cient, while on the other hand, ~ is smoothed by the commutator. Thus Eq. (4.1) is an example 
of an equation with a quite irregular coefficient (the absolutely converging Fourier series 
defines a continuous, but generally speaking, nondifferentiable function), but having a so- 
lution as smooth as desired if the initial conditions are smooth. 

3. The operator N can also be realized in the spatial case. The velocity field must be 
represented by the potential of a simple layer [3], and an analog of Eq. (1.3) is obtained, from 
which the vector density is uniquely determined, after which dynamic system (0.i) is written. 
It proves to be the case that many properties of the "normal velocity" operator are preserved. 
Thus, the planar formulation of the problem can be considered a Lotsman model. 

4. For constant o the problem of evolution of a finite liquid volume was studied in 
precise formulation in [i0] (see literature cited therein). For low Marangoni number, [Ii] 
found an asymptotically exact solution of the problem of thermocapillary propulsion of a 
spherical droplet of viscous liquid within another liquid. 
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